On Rigidity of One-Dimensional Maps

نویسندگان

  • Yunping Jiang
  • YUNPING JIANG
چکیده

The regularity of the conjugacy between two onedimensional maps with singular points is considered. We prove that the conjugacy between two nice and mixing quasi-hyperbolic one-dimensional maps is a diffeomorphism if it is an absolutely continuous homeomorphism and the exponents and the asymmetries of these two maps at all corresponding singular points are the same. We also discuss the application to geometrically finite one-dimensional maps, to Ulam-von Neumann transformations, and to circle expanding maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERAL SYNCHRONIZATION OF COUPLED PAIR OF CHAOTIC ONE-DIMENSIONAL GAUSSIAN MAPS

In this paper we review some recent ideas of synchronization theory. We apply this theory to study the different synchronization aspects of uni-directionally coupled pair of chaotic one-dimensional Gaussian maps.

متن کامل

Nonlinearity, Quasisymmetry, Differentiability, And Rigidity in One-Dimensional Dynamics

In this article, we review some of our research in the study of one-dimensional dynamical systems, in particular, some technique and results in the study of the smooth classification of certain one-dimensional maps. The main results which we review are that if the conjugacy between two mixing and nice quasihyperbolic maps is differentiable at one point with uniform bound, then it is piecewise s...

متن کامل

Rigidity and Renormalization in One Dimensional Dynamical Systems

If two smooth unimodal maps or real analytic critical circle maps have the same bounded combinatorial type then there exists a C 1+ diieomorphism conjugating the two maps along the corresponding critical orbits for some > 0. The proof is based on a detailed understanding of the orbit structure of an innnite dimensional dynamical system: the renormal-ization operator.

متن کامل

On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity.

We introduce the mathematical concept of multifractality and describe various multifractal spectra for dynamical systems, including spectra for dimensions and spectra for entropies. We support the study by providing some physical motivation and describing several nontrivial examples. Among them are subshifts of finite type and one-dimensional Markov maps. An essential part of the article is dev...

متن کامل

Rigidity for Infinitely Renormalizable Area-preserving Maps

The period doubling Cantor sets of strongly dissipative Hénon-like maps with different average Jacobian are not smoothly conjugated. The Jacobian Rigidity Conjecture says that the period doubling Cantor sets of two-dimensional Hénon-like maps with the same average Jacobian are smoothly conjugated. This conjecture is true for average Jacobian zero, e.g. the onedimensional case. The other extreme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002